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Recently a procedure was developed for constructing 100(1 – α)% confidence ellipses 

for points in a low-dimensional plot obtained from a classical correspondence analysis. 

This paper will review the construction of confidence regions for classical and non-

symmetric correspondence analysis and propose a simple procedure for determining p-

values of each of the points in this space. Such features enable the researcher to 

determine the statistical significance of a category to the association structure between 

the categorical variables being analysed. They also reflect the information contained in 

dimensions higher than those that typically allow for a visual inspection of the 

association structure.  
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1. Introduction 
 
The most utilised feature when performing classical (or symmetric) or non-symmetric 

correspondence analysis on a two-way contingency table is the low dimensional space 

(referred to as a correspondence plot). Such a plot allows the researcher to visualise the 

association structure of the categorical variables and is often constructed using two 

dimensions (sometimes three dimensions are considered). An important issue when 

visualising the association between categorical variables using any of the correspondence 

analysis techniques is the need to identify the statistical significance of the proximity of a 

point from the origin of the plot. Since the origin of a correspondence plot can be interpreted 

as the position of all the points when there is complete independence between the categorical 

variables, determining the statistical significance of the distance of a point from the origin is 

appealing. While Lebart, Morineau and Warwick (1984, pg 182 – 186) proposed the 

construction of a 100(1–α)% confidence circle for each category to overcome this issue, such 

circles have only been considered more recently for Beh’s (1997) ordered correspondence 

analysis technique (Beh, 2011) and non-symmetric correspondence analysis (Beh and 

D’Ambra, 2009). Gower, Lubbe and le Roux (2011) also consider confidence circles (and 

confidence ellipses) from a biplot perspective. However, since the axes of a correspondence 

plot are generally weighted differently, elliptical regions offer a more intuitive and appealing 

alternative. In many practical situations, more than three dimensions are required to reflect all 

the association that exists between the categorical variables. Recently, Beh (2010) proposed 

the construction of elliptical regions which allows the researcher to visually represent the 

association structure using only two dimensions and reflecting all of the information 

contained in the optimal correspondence plot. 

Until now, no such regions have been considered for non-symmetric correspondence 

analysis. Therefore this paper advances the Lebart et al. (1984) circles and Beh (2010) 

ellipses in two major ways. Firstly, we shall be adapting the elliptical regions of Beh (2010) 

for performing non-symmetrical correspondence analysis. Secondly, we shall use the 

foundations of these circular and elliptical regions to propose ways of calculating 

approximations of the p-values designed to reflect the statistical significance of the distance 

of a point from the origin. Such p-values allow one to determine the statistical significance of 

a category to the association structure between the two categorical variables.  

To address these two issues, this paper will be organised as follows. Section 2 will 

briefly review the distinctions and mathematical issues of classical and non-symmetric 
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correspondence analysis. Section 3 will provide a review of the issues surrounding the 

identification of the statistical significance of a point from the origin in a low-dimensional 

correspondence plot. The development of confidence regions for classical correspondence 

analysis will be discussed in Section 4 while Section 5 is concerned with the development of 

these regions for non-symmetric correspondence analysis. Expressions identifying the p-

values that reflect the statistical significance of a point from the origin in a classical 

correspondence plot will be derived in Section 6. Section 7 considers this issue for non-

symmetric correspondence analysis. In Section 8, these advances will be applied using data 

from the study of mother–child attachment of van IJzendoorn (1995). Some final remarks 

will be left for the discussion (Section 9). 

 

2. The Two Correspondence Analysis Techniques 
 
2.1. Classical Correspondence Analysis 
 
Consider an I× J two-way contingency table, N, where the (i, j)’th cell entry is given by ijn  

for i = 1, 2, . . . , I and j = 1, 2, . . . , J. Denote the grand total of N by n and the (i, j)’th 

relative frequency by n/np ijij = . Define the i’th row relative marginal frequency by 

∑
=

• =
J

1j
iji pp  and the j’th column relative marginal frequency by ∑

=
• =

I

1i
ijj pp .  

To obtain a visual summary of the structure of the association between the variables 

one may perform classical correspondence analysis. To do so, consider decomposing the 

matrix of Pearson residuals using generalised singular value decomposition (Beh, 2004) such 

that 

∑
=••

λ+=
M

1m
jmmim

ji

ij ba1
pp

p
 

 
where ( ) 1J,IminM −= . Here ima  is the m’th element of the row singular vector associated 

with the i’th row profile. Similarly jmb  is the m’th element of the column singular vector 

associated with the j’th column profile. These elements are constrained such that 

 





≠
=

=∑
=

• 'mm,0
'mm,1

aap
I

1i
'imimi        and   





≠
=

=∑
=

• 'mm,0
'mm,1

bbp
J

1j
'jmjmj  .         (1) 
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The value mλ  is the m’th singular value of the standardised residuals. As usual, the singular 

values are arranged in descending order such that 01 21 ≥≥λ≥λ>   . 

 To graphically view the association between the row and column profile coordinates 

in a low ( )M<  dimensional space the i’th row profile and j’th column profile may be 

simultaneously represented by the principal coordinates 

 
mimim af λ=  and  mjmjm bg λ=    (2) 

 
respectively. In the case where a plot consists of all M dimensions, it is referred to as the 

optimal correspondence plot. Based on these results, the Pearson chi-squared statistic of N 

can be expressed in terms of the coordinates by 

 

∑∑ ∑∑∑
= = = =

••
=

==λ=φ=
M

1m

I

1i

M

1m

J

1j

2
jmj

2
imi

M

1m

2
m

22 gpnfpnnnX .   (3) 

 

where the weight, or principal inertia, associated with the m’th axis is 2
mλ . When performing 

classical correspondence analysis the underlying structure of the association between the row 

and column variables is assumed to be symmetric. That is, they are both considered to be 

associated such that neither of them is regarded as a response variable of another variable. 

The reader is directed to, for example, Greenacre (1984) and Beh (2004) for a more 

comprehensive mathematical description of the issues underlying classical correspondence 

analysis. Clausen (1988) and Greenacre and Blasius (1994) may be considered for a more 

applied focus. 
 
2.2. Non-symmetric Correspondence Analysis 
 
Suppose now we treat the column variable as a predictor variable and the row variable as its 

response variable. For such an asymmetrically associated variable structure, non-symmetrical 

correspondence analysis can be used to provide a graphical summary of the row and column 

points; see, for example, D’Ambra and Lauro (1989). For such a variable structure we may 

consider the generalised singular value decomposition of the following 

  

∑
=

•
•

λ=−=
M

1m
jmmimi

j

ij
ij b~~a~p

p
p

r~ . 
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The values ima~  and jmb~  are akin to the ima  and jmb  values, respectively, of classical 

correspondence analysis. These quantities have the property  

 





≠
=

=∑
= 'mm,0

'mm,1
a~a~

I

1i
'imim        and   





≠
=

=∑
=

• 'mm,0
'mm,1

b~b~p
J

1j
'jmjmj  . 

 
As was the case when considering a symmetrically associated variable structure 

between the rows and columns, the singular values, ( )M21
~,,~,~
λλλ   are arranged in 

descending order. Therefore, the i’th row (response) category and the j’th column (predictor) 

category along the m’th axis of a correspondence plot is defined in terms of principal 

coordinates 

 

mimim
~a~f~ λ=  and  mjmjm

~b~g~ λ=  
 
respectively. For our asymmetric variable structure, the aim is to depict the prediction of the 

rows given the columns in a low ( )M<  dimensional space where the Goodman-Kruskal tau 

index (Goodman and Kruskal, 1954) 

∑
=

•−

τ
=τ J

1j

2
j

num
GK

p1
 

where 
2

I

1i
i

j

ij
J

1j
jnum p

p
p

p∑∑
=

•
•=

• 









−=τ  

 

is used as the asymmetric measure of association. For non-symmetric correspondence 

analysis, the variation of the row and column categories can be measured using the numerator 

of the index such that 

 

∑∑ ∑∑∑∑∑
= = = =

•
==

•
•=

• ==λ=









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M
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I
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M

1m

J
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2
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M

1m

2
m

2
I
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i

j
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J

1j
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p
p

p . 

 
A test the statistical significance of the association structure in this case can be made 

by considering the C-statistic of Light and Margolin (1962)  
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( )( )
( )( )

2
1J1I,I

1i

2
i

num ~
p1

1I1n
C −−α

=
•

χ
−

τ−−
=

∑
 . 

 
where ( )( )

2
1J1I, −−αχ  is the 1 – α percentile of a chi-squared distribution with (I – 1)(J – 1) 

degrees of freedom. Note that the C-statistic may be expressed as the (weighted) sum of 

squares of the (column and) row coordinates such that 

 
( )( ) ( )( ) ∑∑

∑
∑∑

∑ = =
•

=
•

= =

=
• 





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



−

−−
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

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
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
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−

−−
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M
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2
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2
i

M

1m

M

1i

2
imI

1i

2
i

g~p
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1I1nf

p1

1I1nC . 

 

Further information on the mathematical and practical issues concerned with non-symmetric 

correspondence analysis may be found by referring to, for example, Kroonenberg and 

Lombardo (1998, 1999), Lombardo, Beh and D’Ambra (2007) and Beh, Lombardo and 

Simonetti (2011). 

 

3. On the Statistical Significance of a Categorical Point 
 
When performing a classical or a non-symmetric correspondence analysis one needs to 

consider the proximity of a categorical point from other points in the same space (there are 

various issues on this point that we will not consider here) and the proximity of a point from 

the origin of the correspondence plot. It is this second issue that we shall direct our focus and 

thus the interpretation of the origin is of fundamental importance in this paper; the origin 

coincides with where all the points would be if there was complete independence in the 

contingency table. Therefore, points located close to the origin indicate that those categories 

do not play a major role in describing the association structure of the variables. On the other 

hand, the further a point lies from the origin, generally, the more important this category is 

for describing the association structure between the variables. An obvious question then is  
 

“how close (or far) from the origin does a point need to be, with any amount of 

confidence, before the category becomes a statistically significant contributor to 

the association structure?”  
 
The following sections demonstrate ways in which this question may be answered.  
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4. Confidence Regions for Classical Correspondence Analysis 
 
4.1. Confidence Circles 
 
For a two-way contingency table Lebart et al. (1984, pg 182 – 186) proposed a simple answer 

to the question raised in Section 3. They showed that the radii length of the 95% confidence 

circle for the i’th row category in a two-dimensional correspondence plot is 

 

( )
•

=
i

05.0i n
99.5r  

 
where 5.99 represents that 95’th percentile of the chi-squared distribution with two degrees of 

freedom; this value reflects the two dimensions used to graphically depict the association 

between the row and column variables. More generally, the 100(1 – α)% confidence circle in 

a two-dimensional correspondence plot for the i’th row category using classical 

correspondence analysis is 

( )
•

α
α

χ
=

i

2
2,

i n
r .      (4) 

 
Confidence circles constructed in this manner allow the user to identify the statistical 

significance of those points in a two-dimensional correspondence plot that contribute to the 

association structure of the categorical variables being considered. In practice, if the origin is 

included within the circle then that particular category does not contribute to the association 

structure between the variables. Conversely, a confidence circle that does not include the 

origin means that, at the specified level of significance, the category to which it is related, 

contributes to the association structure.  

 

4.2. Confidence Ellipses 
 

A disadvantage of Lebart et al’s (1984) confidence circles is that they do not take into 

consideration the unequal weighting of the axes of a correspondence plot; these weights 

being the principal inertia values. A second limitation is that they do not take into 

consideration the information contained in the higher dimensions of a plot. To overcome 

these two problems, the simple approach of constructing Beh’s (2010) confidence ellipses 

can be considered. 
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Suppose we consider a two-dimensional (D = 2) correspondence plot. Beh (2010) 

proposed as an alternative to the circular regions of Lebart et al. (1984). For the i’th row 

category, a 100(1 – α)% confidence ellipse in a two-dimensional plot can be constructed with 

a semi-axis length along the m’th principal axis of  

 

( ) 









−

χ
λ= ∑

=•

α
α

M

3m

2
im

i
2

2

mim a
p
1

X
x     (5) 

 
for m = 1, 2 where 2

αχ  is the chi-squared statistic with (I – 1)(J – 1) degrees of freedom at the 

α level of significance. Here, ( )α1ix  is the semi-major axis length of the confidence ellipse 

while ( )α2ix  is the semi-minor axis length of the ellipse. Ellipsoids can be constructed for 

three- or higher- dimensional correspondence plots by considering m > 2. Constructing 

confidence ellipses using ( )αimx  takes into account the information of the i’th row coordinate 

in dimensions higher than the second. If the information contained in the third and higher 

dimensions is minimal, or (for some reason) is ignored, then the semi axis length along the 

m’th dimension is 

 

( )
•

α
α

χ
λ=

i
2

2

mim pX
x~ .     (6) 

 
For more information on the link between (4) and (5) refer to Beh (2010). The following 

section briefly describes the comparison of confidence ellipses for correspondence plots of 

varying dimension and of varying levels of significance (α). We will then progress on to the 

calculation of p-values for each category using the foundations of the regions proposed by 

Lebart et al. (1984) and Beh (2010). 

It must be noted that the construction of confidence regions has also been a topic of 

discussion in the past. Ringrose (1992, 1996) explored the use of bootstrapping for the 

construction of convex hulls defining a confidence region. Recently Ringrose (2011) 

provided a comparison of Beh’s (2010) confidence ellipses with ellipses generated through 

bootstrapping for a two-dimensional display and showed via example that, while their 

construction is based on rather different approaches, the regions are equivalently 

interpretable. Greenacre (2007, p. 196–197) also describes the implementation of 
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bootstrapping to construct confidence regions by implementing a peeling step to remove the 

impact of 5% of the more extreme outlying replicates.  

 
4.3. Comparison of Confidence Regions 
 

It should be apparent that if one changes the level of significance then this will impact 

upon the radii length of a confidence circle and the semi-axis length for a confidence ellipse. 

Suppose we consider a comparison of the semi-axis length of a 100(1 – α)% confidence 

ellipse and a 100(1 – α’)% confidence ellipse. The ratio between these two quantities when 

considering the association structure in the optimal correspondence plot is 

 

( ) ( )

( )
2

'

2

M

3m

2
im

i
2

2
'

m

M

3m

2
im

i
2

2

m

'im

im

a
p
1

X

a
p
1

X
x
x

',r
α

α

=•

α

=•

α

α

α

χ

χ
=











−

χ
λ











−

χ
λ

==αα

∑

∑
 . 

 
Therefore, when α < α’ then ( ) 1',r >αα  since 2

'
2

αα χ>χ . For example, consider a two-way 

contingency table consisting of four row categories and four column categories, so that the 

chi-squared statistic considered has nine degrees of freedom. Then, the semi-axis length for 

the m’th dimension with a 0.01 level of significance, when compared with the semi-axis 

length with a 0.05 level of significance, changes by a factor of 

 

( ) 132.1
919.16
666.2105.0,01.0r 2

05.0

2
01.0 ==

χ
χ

=  . 

 
That is, the semi-axis length for a 99% confidence ellipse along all dimensions will be 1.132 

times longer than its corresponding semi-axis length for a 95% confidence ellipse. Similarly, 

for such a contingency table, the semi-axis length of a 99% confidence ellipse will be 1.215 

times longer than the semi-axis length of a 90% confidence ellipse. Depending on the 

magnitude of the semi-axis length such differences may appear minimal or even quite large. 

In particular, when a category has a dominant role in the structure of the association (so that 

the area of the confidence ellipse is small) the impact of changing the level of significance 

may be quite small. However, if a category is not a statistically significant contributor to the 

association structure (so that the area of the confidence ellipse is quite large), the impact of 

changing the level of significance may be quite large. Such a ratio that is given by ( )',r αα  
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may also be shown to be applicable to the confidence circles of Lebart et al. (1984) and also 

to the confidence ellipse (if the association structure reflected in the third and higher 

dimensions is ignored). 

One may also compare the semi-axis length when considering a 100(1 – α)% 

confidence ellipse using only the first two dimensions with the semi-axis length of the ellipse 

that reflects the association in the optimal correspondence plot. Such a ratio may be defined 

as 

( ) ( )

( )
∑

∑
=

•

•

α

=•

α

α

α −=
χ

λ











−

χ
λ

==
M

3m

2
imi

i
2

2

m

M

3m

2
im

i
2

2

m

im

im ap1

pX

a
p
1

X
x~
x

M,2q . 

 
Therefore, if the optimal correspondence plot consists of M = 2 dimensions then such a ratio 

becomes ( ) 12,2q =  and there is no change in the size of the confidence ellipse. However, if 

in the more general case when 2 < D ≤ M, q(2, D) < 1. Therefore, when considering the 

association structure reflected in the optimal correspondence plot, the semi-axis length along 

the m’th principal axis is  ∑∑
=

•
=

• λ−=−
M

3m

2
m

2
imi

M

3m

2
imi /fp1ap1  times shorter than the semi-axis 

length when only considering the information in the first two dimensions.  This suggests that 

if the coordinate of the i’th row category lies close to the origin (relative to the magnitude of 

the principal inertia along each of the higher dimensions) for all high (> 2) dimensions then 

there is very little change in the construction of the confidence ellipse. However, if the 

category has a dominate high (> 2) dimension then the area of the confidence ellipse in the 

two-dimensional correspondence plot will decrease.  

 
5. Confidence Regions for Non-Symmetric Correspondence Analysis 
 
In the previous section, we have described the construction of confidence regions for classical 

correspondence analysis. When it is know (or assumed) that an asymmetric association 

structure exists between the two categorical variables one may instead consider non-

symmetric correspondence analysis. While such a method of correspondence analysis has 

received very little attention when compared to its “symmetric” kin, confidence regions for 

non-symmetric correspondence analysis have recently been discussed in the literature. When 

the column variable is treated as the predictor variable and the row variable is treated as a 
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response variable, Beh and D’Ambra (2009) showed that the radii length of the 95% 

confidence circle for the i’th row (response) category in the two-dimensional plot will be 

 

( )( )1I1np

p199.5
r

j

I

1i

2
i

J
j −−









−

=
•

=
•∑

 .     (7) 

 
Lombardo, Beh and D’Ambra (2007) also derived such a radii length for the non-symmetric 

correspondence analysis of a contingency table consisting of ordered categorical variables. 

The radii length (7) is akin to (4) and so only considers the asymmetric association structure 

between the two variables that is reflected in a two-dimensional non-symmetric 

correspondence plot. The interpretation of the confidence circles derived by considering this 

radii length is analogous to the radii length (4) for classical correspondence analysis. 

To reflect the association structure in dimensions higher than the second, and to 

reflect the different weighting of each of the principal axes, the 100(1–α)% confidence 

ellipse for the i’th row (response) category is constructed using a semi-axis length along the 

m’th principal axis of  

( ) ( )( ) 







−

−−









−

τ
χ

λ= ∑
∑

=

=
•

α
α

M

3m

2
im

I

1i

2
i

num

2

mim a1
1I1n

p1
x  .    (8) 

 
One may also consider the change in the size of the ellipse when using the level of 

significance α and α’, or comparing the ellipses in a two-dimensional and optimal 

correspondence plot. The comments made in Section 3.3 are pertinent here. Crisci and 

D’Ambra (2011) derive analogous semi-axis lengths for the purposes of conducting a 

multiple non-symmetric correspondence analysis of manufacturing enterprises in the 

Campania region of Italy. 

 

6. Approximate P-values and Classical Correspondence Analysis 
 
6.1 Approximate P-values and Confidence Circles 
 
The theory concerned with the construction of 100(1 – α)% confidence circles for a row and 

column coordinate in a correspondence plot may be amended for deriving an approximation 

of the p-value for this point. By doing so, one may determine the statistical significance of a 
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row (or column) category to the association structure between the variables using such a 

value. P-values may also be achieved by considering Ringrose’s (2011) bootstrapping 

approach, but we shall leave this for future consideration.  

To derive an approximate p-value, we first consider the null and alternative 

hypotheses under which it will be generated. As described above, the relative distance of a 

row, or column, profile coordinate from the origin of the correspondence plot reflects the 

variation of the category associated with that coordinate from the hypothesis of complete 

independence. Therefore, the contribution to the chi-squared statistic, or alternatively the total 

inertia, of the i’th row profile point can be made by considering its proximity from the origin. 

This suggests that the null and alternative hypothesis of the i’th row profile is 

 

0f:H
0f:H

imA

im0

≠
=

, 

 

for m = 1, 2, . . . , M, may be considered for identifying the statistical significance of the row 

profile coordinate to the association structure of the two variables forming the contingency 

table. For such hypotheses, we may consider  

 

∑
=

•=
M

1m

2
imi

2
M,i fnpX  

 
as the test statistic that is tested against the 1 – α percentile of the chi-squared distribution 

with M degrees of freedom. Such a test statistic reflects the position of the coordinate in the 

optimal correspondence plot which consists of M dimensions. Often, a subset of D < M 

dimensions are used to visually represent the association between the row and column 

variables; typically D = 2 or D = 3. Therefore,  

 

( ) { }








>χ≈>χ=− ∑
=

•

D

1m

2
imi

22
D,i

2
D,i fnpPXPvaluep    (9) 

 

and is the p-value of i’th row profile coordinate in a D-dimensional correspondence plot. 

Therefore a p-value that is less than the specified level of significance provides evidence that 

the category does play a statistically significant role in describing the association structure 

since it is deemed that the particular point in the configuration is not consistent with zero. 
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One may note that, while (9) takes into consideration the proximity of a point from the origin, 

it ignores the magnitude of the principal inertia’s for each of the D axes in the sub-optimal 

correspondence plot. As we shall see in the following section, we can amend (9) so that this 

problem is overcome. 

 
6.2. Approximate P-values and Elliptical Regions 
 

Consider now the elliptical regions generated using the semi-axis length defined by 

(5). Suppose that a D (< M) – dimensional correspondence plot is used to simultaneously 

represent the association between the row and column points. Equation (5) suggests that  
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Thus, if the information contained in dimensions D + 1, D + 2, . . . , M is reflected in the 

construction of a confidence interval (as it is when considering (5)), the p-value of the i’th 

row point in a D-dimensional correspondence plot may be approximated by 
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where the subscript (i, D) refers to the i’th row category for which the p-value is 

approximated using a D-dimensional correspondence plot. Since, from (2), mimim /fa λ= , the 

p-value (11) may be expressed in terms of the principal coordinates in the optimal 

correspondence plot by 

 

( ) ( ) ( )












λ







λ−φ>χ=− ∑∑

=

−

+=
••

D

1m

2
mim

1M

1Dm

2
mimii

22
D,i /f/fp1pnPvaluep  . 

 

Due to the inclusion ( )∑
+=

λ
M

1Dm

2
mim /f , the proximity of a point from the origin in 

dimensions higher than the D’th is reflected in this p-value. Thus, by considering the 

elliptical regions and p-values described here a two- (or even three-) dimensional 

correspondence plot can be constructed to reflect the significance of a category that would 

otherwise require an optimal correspondence plot to view the association structure. One may 

also note that if the coordinate of the i’th row category in the optimal correspondence plot lies 
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at the origin, the p-value is unity since { } 10P 2 =>χ . Conversely, if the position of a point 

lies at a distance from the origin (in the optimal correspondence plot) then the p-value is, 

approximately, { } { }2222 XPnP >χ=φ>χ . 

In many practical situations, the first D dimensions may be sufficient to adequately 

describe the association structure between the categorical variables. In this case, one may 

ignore the higher dimensions without any significant loss of information of this structure. In 

this case, the p-value for the i’th row category as given by (11) may be amended to give 
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It is apparent from considering the p-values of (11) and (12) that, unlike (9), the 

inequality of the principal inertia values can be taken into consideration, thereby reflecting 

the relative weighting of each of the axes in a D – dimensional correspondence plot.  

 
7. Approximate P-values and Non-Symmetric Correspondence Analysis 
 
We may follow the same arguments made above to derive approximations of the p-value of 

row (response) and column (predictor) points in a low, or optimal, correspondence plot 

obtained from performing non-symmetric correspondence plot. 

Suppose we consider this time the derivation of the approximate p-value for the j’th 

column (predictor) category that reflects the association structure contained in the optimal 

correspondence plot. In a manner that is analogous to that described in Section 6, for a D-

dimensional non-symmetric correspondence plot, this value is 
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Therefore, by considering the elliptical regions these p-values, a two-dimensional 

correspondence plot can be constructed to reflect the statistical significance of a category that 

would otherwise require an optimal correspondence plot to view the asymmetric association 

structure. If only the first two dimensions are considered when constructing the elliptical 

regions for non-symmetric correspondence plot (so that D = 2) then, for the j’th column 

predictor category, the approximate p-value of its point is 
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Expressions for the calculation of these p-values for the row (response) categories 

may be analogously derived. 
 
8. Application 
 
8.1. The Data 
 
Consider the two-way contingency table of Table 1 that cross-classifies a mother’s 

attachment to her child, and the child’s response to their mother’s level of attachment. The 

column variable is therefore defined as Mothers Attachment Classification and the row 

variable is defined as Infant Response. The data are based on an extensive study of mother–

child attachment conducted by van IJzendoorn (1995). The four column categories are a 

result of the adult attachment interview (George et al., 1985) while the four row categories 

are observed from the Ainsworth strange situation (Ainsworth et al., 1978). Table 1 was 

analysed using non-symmetric correspondence analysis by Kroonenberg and Lombardo 

(1999) and was considered by Beh (2010) and Ringrose (2011) in their derivation of elliptical 

confidence regions. 

 

 

Table 1 about here 

 

 

 

While it is apparent that the association structure between Mothers Attachment Level 

and Infant Response may be treated asymmetrically, we shall first consider that the 

association structure between the variables is symmetric. In doing so, we shall highlight the 

confidence regions and p-values of Table 1 by performing a classical correspondence 

analysis. 
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8.2. Classical (Symmetric) Correspondence Analysis 
 
By considering the row and column variables to be symmetrically associated, the Pearson 

chi-squared statistic is 252.3982 and has a p-value <0.0001. Therefore, there is ample 

evidence to conclude that an association exists between the two variables. By performing a 

correspondence analysis on Table 1, the first principal inertia is 249.02
1 =λ  and the second 

principal inertia is 165.02
2 =λ . Together these two values account for 89.9% of the 

association that exists between the two variables, and this association structure is reflected in 

the two-dimensional correspondence plot of Figure 1. Superimposed on this figure are the 

95% confidence circles of Lebart et al. (1984) for each row and column point.  

Figure 1 suggests that, with the exception of Resistant (whose circular region overlaps 

the origin), all of the row and column categories contribute to the association structure 

between the two variables. It is also evident that the confidence circle of Preoccupied 

includes the origin within the region. This suggests that the p-value for Resistant and 

Preoccupied is more than 0.05. The row category p-values based on the confidence circles of 

Lebart et al. (1984), obtained using (9) when D = 2, are summarised in the second column of 

Table 2. Similarly, the column category p-values of the contingency table are summarised in 

the second column of Table 3. It can be seen that the p-value of Resistant is 0.287. However, 

the p-value of Preoccupied is 0.0203, less than 0.05. This suggests that perhaps the 

confidence circles of Lebart et al. (1984) are not effective for monitoring the statistical 

significance of a category from the hypothesis of no association. This may be due to the equal 

weighting that is assumed of each of the axis when constructing Lebart et al’s (1984) 

confidence circles. 

 

 

Figure 1 about here 

 

 
 

As described above, the confidence circles of Lebart et al. (1984) are constructed by 

assuming that the principal inertias of the first two dimensions are equal. Since the two values 

are quite different, one may instead consider the elliptical regions proposed by Beh (2010). 
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These regions appear in Figure 2 but reflect only the information contained in the first two 

dimensions. Note that the relative size of these regions is consistent with those that appear in 

Figure 1. By taking into consideration the unequal weighting of the two principal axes, the 

region for Preoccupied again includes the origin which suggests that this column category 

does not play a statistically significant role in the association structure between the two 

variables. Indeed, the p-values associated with elliptically generated regions reflect the 

importance (or not) of these categories. The third column of Table 2 summarises the p-values 

of the row categories and are calculated using (12) where D = 2, while the third column of 

Table 3 provides those p-values of the column categories. Table 2 shows that, when 

considering the first two dimensions only, the p-value for Resistant is 0.802 indicating that 

this particular row category does not play a significant part in the association. However, the 

remaining three row categories, which have a p-value less than 0.001 do play a significant 

role in the association structure; in the following Tables a zero p-value represents those 

categories with a p-value less than 0.001. Similarly, Figure 3 shows that, at the 0.05 level of 

significance, Preoccupied (which has a p-value of 0.108 when considering only the first two 

dimensions) does not play a significant role in the association structure between the variables 

of Table 1. 

 

 

Figure 2 about here 

 

 

These p-values ignore the association reflected by the third (and, in general, higher) 

axis. However, such information may be reflected by considering the p-values derived from 

(11) where D = 2. In such a case, all of the row and column categories have a p-value that is 

less than 0.001 thus concluding that all of these categories play a statistically significant role 

in the association between the row and column variables of Table 1. The elliptical regions of 

Figure 3 for both sets of categories provide a graphical representation of this result.  
 

 

 

Figure 3 about here 
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The key difference between Figure 2 and Figure 3 is the size of the elliptical region 

for Resistant and Preoccupied. This suggests that these two categories have a non-zero 

coordinate in the third dimension of the optimal correspondence plot; Figure 2 of Beh (2010) 

confirms that this is the case. As a result, the p-value of these categories dramatically changes 

due to the inclusion of the additional information on the association structure contained in the 

higher dimension – in both cases reducing the p-value from a relatively large quantity to less 

than 0.001. Such a dramatic change in the conclusions yielded from the regions and p-values 

shows that it is important to reflect the information contained in higher dimensions rather 

than relying on findings of the association structure on just the first two dimensions as it is 

typically done when performing correspondence analysis. 

 

 

Table 2 about here 

 

 

 

 

Table 3 about here 

 

 

 

To validate the statistical significance of each of the categories described above, we may 

consider  

( )( )jiji

jiij
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−
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Haberman (1973) refers to ijr  as the adjusted standardised residual for the (i, j)th cell and is a 

random variable from the standard normal distribution. The significance of a cell to the 

association structure between the two categorical variables may be assessed by comparing 

these residuals with 1.96 (assuming that a 0.05 level of significance is considered). Table 4 

gives these residuals and those values in bold are significant at the 0.05 level of significance. 
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We can see that each of the rows and columns provide a very strong contribution to the 

association structure between the two categorical variables of Table 1. Therefore there is 

evidence to suggest that each of the categories plays a vital role in describing the significance 

of the association between Infant Response and Mothers Attachment Classification. If we had 

considered the regions, or p-values, associated with Lebart et al.’s (1984) confidence circles 

we would have neglected the significance of the (3, 3)’th, or (Resistant, Preoccupied)’th, cell 

in Table 1. Such important association features would have also been missed by considering 

the elliptical regions of Figure 2.  

 

 

Table 4 about here 

 

 
 
 
8.3. Non-Symmetric Correspondence Analysis 
 
One may consider that the association between Mother’s Attachment Classification and 

Infant Response to be more naturally asymmetrically structured such that the column variable 

(Mother’s Attachment Classification) is treated as a predictor variable and the row variable 

(Infant Response) is treated as a response variable. Indeed Beh and D’Ambra (2009) 

considered such an association structure and so performed a non-symmetric correspondence 

analysis. In doing so, the Goodman-Kruskal tau index is 1990.0=τ  and has a numerator of 

1259.0num =τ . Therefore, with a C – statistic of 326.51, there is a highly statistically 

significant (p-value < 0.0001) asymmetric association between the column (predictor) and 

row (response) variables. Thus, the attachment classifications given for the mothers do 

impact upon how the infant responds. Investigating more precisely the nature of the 

asymmetric association can be undertaken by considering non-symmetric correspondence 

analysis. A two-dimensional visual summary of the asymmetric association can be found by 

considering Figure 4. Superimposed on this figure are the 95% confidence circles of Beh and 

D’Ambra (2009) for the predictor categories. 
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Figure 4 about here 

 

 

 

By performing a non-symmetric correspondence analysis on Table 1, the first 

principal inertia is 0.08742
1 =λ  and the second principal inertia is 0.03552

2 =λ . Together 

these two values account for 97.63% of the asymmetric association that exists between the 

two variables. This Figure 4 shows that, if we confine our attention to just the first two 

dimensions, and ignore the differently weighted axes, then all of the four levels of Mother’s 

Attachment Classification play a significant role in determining their Infants Response. This 

suggests that the p-values associated with the four column categories are less than 0.05. In 

fact, the second column of Table 6 shows that the p-value for Preoccupied is 0.002 and for 

the remaining categories it is less than 0.0001. Similarly, Figure 4 also shows that all of the 

infant responses (with the exception of Resistant) are impacted by the mother’s attachment 

levels. Thus, Resistant has a p-value greater than 0.05 (the second column of Table 5 shows 

that it is 0.760) and the remaining infant responses are all less than 0.001.  

 

 

Figure 5 about here 

 

 
 

 
Such confidence circles for non-symmetric correspondence analysis do not reflect the 

information contained in dimensions higher than the second, nor do they reflect the different 

principal inertia values attached to the axes. For this reason, confidence ellipses may be 

considered. Figure 5 shows these regions when considering the information contained in the 

optimal non-symmetric correspondence plot, while Figure 6 shows those ellipses which 

reflect the association in the first two dimensions only. In both cases all mother attachment 

levels play a significant role in the asymmetric structure of the two categorical variables. The 

differences in these two figures are consistent when comparing the configuration of points 
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using classical correspondence analysis (see Figure 2 and Figure 3). The key difference 

between Figure 5 and Figure 6 is the size of the confidence ellipse for Preoccupied. If we 

consider only the information contained in the first two dimensions, Figure 6 suggests that 

the p-value for this row category is larger than the p-value when considering its confidence 

circle (the third column of Table 6 shows that this p-value is 0.027). If we take into account 

the information contained in the optimal plot, the size of the ellipse in Figure 5 is a lot 

smaller, indicating that this particular category has at least one non-zero coordinate in one of 

the higher dimensions. Therefore its p-value reduces to less than 0.001 (see the fourth column 

of Table 6). 

 

 

Figure 6 about here 

 

 

 
 

 

Table 5 about here 
 

 

 

 

 

Table 6 about here 
 

 

 

9. Discussion 
 
This paper has examined procedures for quantifying and interpreting the p-value of points in 

a classical (symmetric) and non-symmetric correspondence plot. We have shown by way of 

example that, for classical correspondence analysis, while the confidence circles of Lebart et 

al. (1984) and the p-values that may be derived from them are the most simplest of those 

considered, they do not take into consideration the inequality of the principal inertia values. 

Nor do such regions reflect the information contained in higher dimensions. On the other 
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hand, the p-values derived from considering the elliptical regions of Beh (2010) allow the 

user to take into consideration these two important aspects of the correspondence plot. We 

have also extended these features to be applicable when performing non-symmetric 

correspondence analysis and allow for a clearer understanding of the asymmetric structure of 

the categorical variables. 

Our application has been focused on a simple two-way contingency table, but the 

same technique may be applied to consider multiple correspondence analysis using the 

indicator matrix, Burt matrix, or any other equivalent approach. Similarly, this paper has 

focused on the classical correspondence plots, but other plotting mechanisms could have been 

considered (such as biplots). However, we shall leave these issues for future investigation. 
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Table 1 

Cross-classification of the attachment classification of a mother and her infant 
 

Infant Response  
Mother’s Attachment Classification  

Dismissing Autonomous Preoccupied Unresolved Total 

AVOIDANT 62 29 14 11 116 

SECURE 24 210 14 39 287 

RESISTANT 3 9 10 6 28 

DISORGANISED 19 26 10 62 117 

Total 108 274 48 118 548 

 

 

 

 

 

Table 2 

Row category p-values from a classical correspondence analysis of Table 1 based on (i) 

Lebart et al.’s (1984) circular regions, (ii) 2-D elliptical regions and (iii) optimal elliptical 

regions 

Row Category 
Confidence 

Circle(i) 

Confidence Ellipse(ii)  

(D = 2) 

Confidence Ellipse(iii)  

(D = M = 3) 

Avoidant 0 0 0 

Secure 0 0 0 

Resistant 0.287 0.802 0 

Disorganised 0 0 0 
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Table 3 

Column category p-values from a classical correspondence analysis of Table 1 based on (i) 

Lebart et al’s (1984) circular regions, (ii) 2-D elliptical regions and (iii) optimal elliptical 

regions 

Column 

Category 

Confidence 

Circle(i) 

Confidence Ellipse(ii)  

(D = 2) 

Confidence Ellipse(iii)  

(D = M = 3) 

Dismissing 0 0 0 

Autonomous 0 0 0 

Preoccupied 0.0203 0.108 0 

Unresolved 0 0 0 

 

 

 

 

 

Table 4 

Adjusted standardised residuals of Table 1. Bolded values are significant at the 0.05 level of 

significance. The values in parentheses are the residuals’ p-values 

 

Infant 

Response  

Mother’s Attachment Classification 

Dismissing Autonomous Preoccupied Unresolved 

Avoidant 8.19 
(<0.001) 

-3.81 
(<0.001) 

1.20 
(0.114) 

-2.80 
(0.003) 

Secure -4.33 
(<0.001) 

5.55 
(<0.001) 

-2.22 
(0.013) 

-2.90 
(0.002) 

Resistant -1.07 
(0.142) 

-1.34 
(0.091) 

4.82 
(<0.001) 

-0.01 
(0.495) 

Disorganised -0.85 
(0.199) 

-4.25 
(<0.001) 

-0.08 
(0.469) 

7.33 
(<0.001) 
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Table 5 

Row category p-values from a non-symmetric correspondence analysis of Table 1 based on 

(i) Beh and D’Ambra’s (2009) circular regions, (ii) 2-D elliptical regions and (iii) optimal 

elliptical regions 

Row Category 
Confidence 

Circle(i) 

Confidence Ellipse(ii)  

(D = 2) 

Confidence Ellipse(iii)  

(D = M = 3) 

Avoidant 0 0 0 

Secure 0 0 0 

Resistant 0. 760 0.999 0.925 

Disorganised 0 0 0 

 

 

 

Table 6 

Column category p-values from a non-symmetric correspondence analysis of Table 1 based 

on (i) Beh and D’Ambra’s (2009) circular regions, (ii) 2-D elliptical regions and (iii) optimal 

elliptical regions 

Column 

Category 

Confidence 

Circle(i) 

Confidence Ellipse(ii)  

(D = 2) 

Confidence Ellipse(iii)  

(D = M = 3) 

Dismissing 0 0 0 

Autonomous 0 0 0 

Preoccupied 0.002 0.027 0 

Unresolved 0 0 0 
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Figure 1. 95% Confidence circles from a classical correspondence analysis with a radii 

length of (4). These regions take into account the position of the row and column points in the 

first and second dimensions only. 
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Figure 2. 95% Confidence ellipses from a classical correspondence analysis with a semi-axis 

length of (6). These regions take into account the row and column points in the first and 

second dimensions only. 
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Figure 3. 95% Confidence ellipses from a classical correspondence analysis with a semi-axis 

length of (5). These regions take into account the position of the row and column points in the 

third, and higher, dimensions. 
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Figure 4. 95% Confidence circles for a non-symmetric correspondence analysis of Table 1. 

These regions take into account the position of the row and column points in the first and 

second dimensions only. 
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Figure 5. 95% Confidence ellipses for a non-symmetric correspondence analysis of Table 1. 

These regions take into account the position of the row and column points in the third, and 

higher, dimensions. 
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Figure 6. 95% Confidence ellipses for a non-symmetric correspondence analysis of Table 1. 

These regions take into account the position of the row and column points in the first and 

second dimensions only. 
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